

G. P. L. Walker and flood basalts

- Flæðibasalt = Plateau basalts Flood basalt
- "early Tertiary volcanism being on a much bigger scale than recent volcanism in Iceland."

 Walker 1995

Walker, 1995

Walker, G., 1995, Flood basalts versus central volcanoes and the British Tertiary volcanic Province, *Geological Society, London, Memoirs, 16*, 195-202

Flood basalt areas

Bryan et. al. 2002

G. P. L. Walker and flood basalts

Gibson, I., 1969, A comparative account of the flood basalt volcanism of the Columbia Plateau and Eastern Iceland, *Bull. Volc., Springer Berlin / Heidelberg*, **1969**, *33*, 419-437

"A flood basalt field is an accumulation of overlapping or superposing tabular sheets..."

Walker, 1995

Walker, G., 1995, Flood basalts versus central volcanoes and the British Tertiary volcanic Province, *Geological Society, London, Memoirs, 16*, 195-202

End-members in flow architecture

Simple flows (tabular)

*CHILDREN ENFANTS

not so divisible into flow-units

Common in flood basalt areas No modern example

Compound flows

lava that is divisible into flow-units

Common everywhere

Walker, G.P.L. (1971) Compound and simple lava flows and flood basalts. Bull. Volcan., 35, 579-590.

Walkers postulated relationships between simple and compound flows

Walker, G.P.L. (1971) Compound and simple lava flows and flood basalts. Bull. Volcan., 35, 579-590.

Hólmar and Grjótá olivine basalt groups

The architecture of the HOB and GOB groups

Dominantly compound with a few flows that are simple

Þ. Þórðarson

Overview

Hólmar olivine basalt group

- Total volume = ~119 km³
- · Thickens around the RCV
- No. lava flows = ~ 20
- ~50% >6 m thick

Grjótá olivine basalt group

- Total volume = ~86 km³
- Thickens above RCV
- No. lava flows = ~ 40
- >50% >6 m thick
- Pahoehoe/minor rubbly

Kumlafell, Hólmatindur and Hjálmadalur tholeiite groups

The architecture of the Kumlafell group

Pahoehoe in Rauðimelur quarry - Hrútagjá

Mode of emplacement of Kumlafell and Hólmatindur groups

High and sustained effusion rates

Low/er effusion rates

Overview

Kumlafell tholeiite group

- Total volume = $^{\sim}160$ km³ $^{\sim}70\%$ >10 m thick
- Area = $^{\sim}1000 \text{ km}^2$
- Thicken to the west
- No. lava flows = 2 25

- No inflation structures and tubes
- Pahoehoe and rubbly

Largest flows ~10-30 km³

Estimated effusion rates = ~10⁵ m³/s Estimated emplacement time < 1 day

Langhamar – Hólmatindur - Eskifjörður

The Hjálmadalur group

Mode of emplacement of Hjálmadalur group

High and sustained effusion rates

Overview

Hjálmadalur group

- Total volume = ?
- ~90% >6 m thick
- Area = 600 km²
- Not thermally efficient
- Thickens to the west
- · Rubbly and aa

• No. lava flows = >20

Estimated effusion rates = ? Estimated emplacement time = ?

Grænavatn porphyritic group

Overview

Grænavatn porphyritic group

- Total volume = 60 km³
- Area = $^{\sim}1000 \text{ km}^2$
- Thickens to the northwest
- No. lava flows = 14

- ~8 m thick
- Mixed compound and simple
- Pahoehoe, rubbly and slabby

Estimated effusion rates = 10³-10⁴ m³/s

Harris and Rowland, 2009

Conclusions

- Individual lava groups have their characteristic architecture.
- Individual flow fields display variation in flow morpholgy.
- Despite the diversity in flow morphology, the flows are still categorized as flood basalts.
- The flood basalts vary from laki-type to 1-2 orders of magnitude larger than Laki.

